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ABSTRACT 

A critical-speed analysis of undamped rigid rotors on flexible foundations reveals 
four conical-mode solutions comprising forward and backward precession. There is also 
a two-solution bouncing-mode set dependent only on foundation-to-rotor mass and spring- 
constant ratios. Although analysis of a firm-foundation model omits two of the four 
conical-mode solutions, good agreement exists between the two corresponding solutions. 
The flexible-foundation analysis can be approximated by a simple firm-foundation result 
when the foundation-to-rotor spring-constant ratio is zero or infinite. Only three calcu- 
lations are  needed in this range to cover all intermediate values. 
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CRITICAL-SPEE 

SUMMARY 

A theoretical analysis of rigid rotors in undamped bearings on flexible foundations 
develops a general frequency equation for both forward and backward pr 
set of two unique solutions comprises the bouncing-mode natural freque 
function of foundation-to-rotor mass and spring- constant ratios, but independent of rotor 
speed and moments of inertia. Another set, the conical mode, is a function of rotor 
speed and moments of inertia and contains four unique solutions. Example maps are 
given for a wide range of rotor speed and of mass, moment-of-inertia ratios, and 
spring-constant ratios as a guide in preliminary design. Besides locating major critical 
speeds, the maps locate nonsynchronous critical speeds that may result from bearing de- 
fects. 

The four conical-mode critical-speed solutions appear on the maps as a high- and 
low-frequency set of two-branch curves: Although the firm-foundation analysis omits 
two of these critical speeds, its two existing solutions agree well with flexible-foundation 
results. Furthermore, the two omitted crit ical  speeds can be approximated by the two 
firm-foundation bouncing- mode solutions. The flexible-foundation analysis can be ap- 
proximated by the two-solution firm-foundation result for the zero and infinite extremi- 
ties of the foundation- to-rotor spring- constant ratio. Therefore, only three flexible- 
foundation calculations a re  needed within this range to cover all intermediate values. 

INTRODUCTION 

Stationary turbomachinery is customarily mounted on rigid foundations. Therefore, 
many theoretical studies of rotor vibration assume firm foundations, as in reference 1. 
An important extension is to regard the foundation itself as flexibly supported. Such con- 
figurations are more representative of aircraft and spacecraft installations. Analysis of 

those of firm-foundation models. 
this application is complicated by the on of at least two variables to 
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Crook and Grantham report in reference 2 on a method of predicting synchronous 
vibrations of rotors on underdamped flexible foundations. By including the energy loss 
associated with damping factors checked by experiment, they show close agreement be- 
tween theory and observation. Gunter’s work on a flexible-foundation analysis in refer- 
ence 3 reveals that proper foundation design can provide considerable improvement in 
rotor stability characteristics. 

The present report extends the methods of reference 1 to include vibratory motion of 
the foundation. It derives the general frequency equation, presents the results of a para- 
metric analysis of rotor dynamic frequencies and critical speeds, and gives some se- 
lected examples. The purpose of this report is to aid in preliminary design of turboma- 
chinery by providing guidance to the location of potential synchronous and nonsynchronous 
critical speeds. 

The work presented here covers a wide range of rotor shapes, rotor speeds, and 
foundation shapes. The centers of gravity of the rotor and foundation in the present 
model remain fixed midway between the bearings. Damping and unbalance forces are 
neglected in this analysis to isolate the effects of shape, speed, and spring-constant var- 
iations. 
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vibration amplitude, m 

constant functions of r39 r5, and rg 

polar moment-of-inertia of rotor, kg-m 

diametral moment-of-inertia of rotor, kg-m 

2 

2 

moment of inertia of foundation, kg-m” 

linear spring constant of rotor bearings, kg/sec 

linear spring constant of foundation, kg/sec 

2 

2 

distance between bearings, and also between foundation mounts, m 

rotor mass, kg 

foundation mass, kg 

rotor precession frequency, rad/sec 

critical-speed ratio, r = r1/r4 = p/w 

square of rotor frequency parameter, rl = (p/+iq 

t time, sec 
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y1, y2 

Y i ,  Y i  
21z2 

z'1zi 

"1 

"2 

"3 

"4 

"5 

"6 

=7 
0 

lateral distance from arbitrary reference frame to rotor bearings, m 

lateral distance from arbitrary reference frame to foundation mounts, m 

lateral distance from arbitrary reference frame to rotor bearings (perpendicu- 
lar to y1 and y2), m 

dicular to y i  and yi), m 
lateral distance from arbitrary reference frame to foundation mounts (perpen- 

frequency parameter, p/r/kl/M = di 
rotor disk effect, Il/MZ 

rotor polar-to-diametral moment-of-inertia ratio, ID1 

rotor rotational-speed parameter, 0/4* 
foundation- to- rotor moment - of -inertia ratio, Ii / 11 
foundation- to- rotor spring - constant ratio, k2/kl 

foundation-to-rotor mass ratio, M'/M 

rotor rotational speed, rad/sec 

2 

Subscript: 

cr  major critical 

Super scripts: 

first derivative with respect to time 

second derivative with respect to time .. 

DE SC R I PTlON OF ROTOR -FOUN DATl ON MO DEL 

Figure 1 is a schematic representation of a rigid rotor with flexible bearings on 
pedestals attached to a flexible foundation. This study considers motions in the lateral 
mutually perpendicular directions y, y' and z, z' directions. Consideration of axial 
motion is excluded. 

No damping or unbalance forces are assumed in the model of figure 1. The centers 
of gravity of the rotor and foundation masses are assumed to be midway between the ro- 
tor bearings. All bearings a re  assumed to be linear springs. In both lateral directions 
the rotor-bearing spring constant is k1/2 and that of the foundation is k2/2 (see fig. 1). 

To this extent, there is one less variable in the present analysis than in that of ref- 
erence 1, because the center-of-gravity location is fixed. An additional variable is 
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Figure 1. - Schematic sketch of a rigid rotor on a flexible foundation. 

added, however, due to foundation flexibility in terms of the spring constant k2. f i r -  
thermore, the presence of the vibrating foundation mass adds two more variables - its 
mass M' and moment of inertia I i .  The net result is that the present analysis is com- 
plicated by two more variables than that of reference 1. 

Rotor slenderness ratio is introduced into the mathematical analysis in terms of the 
rotor polar moment of inertia I and the diametral moment of inertia I1. The rotor 
moments of inertia are expressed as the following nondimensional parameters: 

Rotor disk effect: 

I1 
7T2 = - 

MZ2 

Rotor polar - to- diametr al moment - of - inertia ratio: 

I 
7T3 = - 

I1 

The parameters n2 and r3 are  small for pencil shapes, and larger for disks. The 
parameter r2 is the disk effect used in reference 4. For a concentrated mass, 7r2 = 0, 
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and for a disk having all its mass distributed over a large radius, r2 = 00. The ratio 
7r3 = 0.0149 for a rod whose length is 10 times its diameter. For a disk of negligible 
thickness, 7r3 = 2. Therefore, configurations become more like disks as r2 and 7r3 

increase. 

ANALYSIS 

This section presents the equations of motion for the simplified model shown in fig- 
ure 1. Solution of the equations of motion leads to a general frequency equation. This 
equation is applied to various special conditions of geometry and speed to cover the wide 
range of conditions used in the examples. 

The object of this analysis is to study the frequency and critical-speed characteris- 
tics of the model in figure 1. Therefore, no attempt is made to solve the equations for 
vibration amplitudes. 

Equations of Motion 

Derivation of the following equations of motion was motivated by the work of 
Timoshenko in reference 5. The equations include the assumption of small rotor and 
foundation displacements: 

Rotor: 

Foundation: 

k1Z2 k1Z2 

4 4 
- Il(Z2 - g1) - - ( z2  - z;) + - (zl - z' ) - 0 IdY2 - Y1) 1 -  



(kl + k2)Z2 k1Z2 
-1' (Z' - Zi) + (z i  - Z i )  - - (z l  - z2) = 0 

4 4 1 2  

Frequency Solutions 

Assumed solutions. - Den Hartog (ref. 4) solves problems of two masses joined by 
springs by assuming that both masses execute harmonic motions with the same fre- 
quency. This assumption is conservative, because it represents a resonant condition in 
which the motions of the two masses reinforce each'other. This is the most critical 
condition, and is the one to be avoided if possible. 

tions: 
Accordingly, the same frequency p appears in all of the following assumed solu- 

y1 = A sin pt (11) 

y2 = B sin pt (12) 

z1 = c cos pt (13) 

z2 = D COS pt (14) 
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Coefficient matrix. - When equations (11) to (18) are inserted into equations (3) 
to (lo), the following set results: 

A(kl - Mp2) + B(kl - Mp 2 ) - Ekl - Fkl = 0 

2 2 C(k1 - Mp ) + D(kl - Mp ) - Gkl - Hkl = 0 

-Akl - Bkl + E [(kl + k2) - Mfp2] + F [(kl + k2) - M'p2] = 0 

-Ckl - Dkl + G[(kl + k2) - M'p2] + H [(kl + k2) - M'p2] = 0 

In matrix form, this set is 
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0 

. 
A 

B 

C 

D 

E 

F 

G 

H 
J 

0 

, = O  

Determinant reduction. - Nontrivial solutions of A, €3, C, D, E, F, G, and H in 
equations (19) to (26) require that the determinant of the coefficient matrix given in equa- 
tion (27) vanish. Reduction of this determinant leads to the general frequency equation 

((kl - Mp2) [ckl + k2) - M'p2] - k:}' 

k1L2 

4 
-1wp (!$- Ilp2) 0 -- 

2 klZ2 
0 .(y- I I P j  1wp - 4 

klL2 

4 
-- 0 

klL2 

4 
0 - 

Equation (28) is of the 16th order in p. There must therefore be 16 solutions, al- 
though not all are unique. In equation (281, the determinant and its multiplying factor 
each contains eight solutions. 

Nondimensional parameters. - Expressing the variables in equation (28) in nondi- 
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mensional form is especially helpful in solving the equation and presenting the results. 
The nondimensional parameters and their nomenclatures are defined as follows: 

Precession frequency parameter: 

Rotor disk effect: 

I1 n2 = - 
MI 

Rotor polar-to-diametral moment-of -inertia ratio: 

I n3 = - 
I1 

Rotor-rotational- speed parameter: 

w n4 = * 
Foundation-to-rotor moment- of-inertia ratio: 

Foundation-to-rotor spring- constant 

I; n5 = - 
I1 

ratio: 

7r6 = - 
k l  

Foundation- to- r otor mass ratio : 
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M1 
TI7 = - 

M 
( 3 3 )  

An objective of this analysis henceforth will be to identify frequency solutions for 
r1 instead of p. It will  be seen that definition of another parameter S simplifies the 
appearance of high-degree polynomials by halving their orders: 

Nondimensional general frequency equation. - With the use of the nondimensional 
parameters defined by equations (l), (2), and (29) to ( 3 3 ) ,  the general frequency equation 
(eq. (28)) assumes the following nondimensional form: 

1 - -  0 
4r2 

1 
0 

( 3 5 )  = o  

Mode Frequency Equations 

In equation ( 3 5 ) ,  both the determinant and its multiplying factor contain valid solu- 
tions. Solutions for r1 obtained from this factor represent the bouncing-mode natural 
frequency. The rotor rotational-speed parameter 7r4 and moment-of-inertia ratios T 
r3, and r5 do not appear in this factor. Therefore, the bouncing mode solutions are 
the natural frequencies that exist whether the rotor is rotating or not. 

tions of rotor speed and the moment-of-inertia ratios. The foundation-to-rotor mass 

2' 

The determinant in equation ( 3 5 )  yields the conical-mode solutions, which are func- 
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. - Equating to zero the factor outside 
and using equation (34) yield the bouncing-mode frequency equation 

The solution of this quadratic expression is 

r 7 

Values of S greater than one result from using the positive sign in this expression. The 
negative sign yields values of S less than or equal to one. 

Equation (37), by way of equation (34), represents 4 of the total of 16 solutions for 
p or r1 contained in equations (28) or (35). Because the factor outside the determinant 
in equation (35) is of second degree, there exists a duplicate set of the four solutions for 
r1 contained in equation (37). Of these eight solutions, only two are  unique. 

Conical mode. - The conical-mode frequency equation is obtained by equating the 
determinant in equation (35) to zero. The result is 

1 % 1 +-+-+- 
16 2n2n6 2a27r6 2r2 

S +-= 1 0 (38) 
256s2 2 
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Solving this quartic equation for S is cumbersome. It is more convenient to solve 
equation (38) for the shape-speed parameter 7r37r4. The resulting expression is 

2 

Ir31r4 = - 6 1 
{ ( 3 4 -  ( . )  ( 1 + : + 3 3 3  

+ [-$ + n5 + $)+$ + .) + 4; - (+) (1 + 2 + ;)s + (&I r" (39) 

Further simplification is possible by multiplying equation (39) by & and considering 

(ST,) and (7r4&) as the variables. Therefore, equation (39) becomes 

1 
4 

+ -  

The arrangement (Sn2) in effect reduces the number of variables by 1. 
As (Sn,) -. 0 in equation (40), the relation 
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exists with the aid of equation (34). This relation is approached asymptotically by back- 
ward precession in the low-frequency set. 

AS - 03 and ( "4 6) - co in equation (40), the ratio 

"1 4i 
"3("4 6) = 

is approached for all shapes, irrespective of n5 and "6. The relation expressed by 
equation (42) applies to the condition of forward precession in the high-frequency set. 

When the springlconstant ratio r6 - 0, an approximate form of equation (40) is 

To provide physical significance of the zero condition for "6, it may be considered that 
it is approached by rotors in aircraft or spacecraft (floating foundation). Very hard 
spring rotor- bearing mounts also approach this condition. 

that the right side is a perfect square, A convenient form is 
A remarkable simplification to the solution of equation (43) is available by noting 

where 

and 

1 

2"l 6 2  

7 6 = 1 for forward precession 

6 = -1 for backward precession I 

(44) 

(45) 
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Figure 2. - Coefficient for abbreviated solution (for use in eq. (44)). 

The technique of displaying the frequency equation in the form of equation (44) was sug- 
gested by Den Hartog in reference 4. It was also used in reference 1. 

Figure 2 presents the variation with the foundation-to-rotor moment-of-inertia ratio 
of the coefficient {m in equation (44). The sensitivity becomes extreme 

When the spring-constant ratio n6 and square of the adjusted frequency parameter 

n5 
when r5 < 1, which represents a large rotor on a small foundation. 

Sr2 both become large (high-frequency set), equation (40) reduces to the relation 

(46) '6 Sn2 = - 
4n5 

or 
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which is a parabola in a1 6 and a6. A large value of a6 approaches the condition 
for a firm foundation. This condition also applies to very soft rotor-bearing mounts on 
a flexible or f irm foundation. The expression in equation (47), which will be discussed 
on page 29 in connection with figure 7, applies to the high-frequency set of solutions. 
Equations (46) and (47) also result from equation (40) when the adjusted shape-speed 

parameter r3(1a4 6) becomes large, as by high rotor rotational speed. 
When 3-6 becomes large with Sa2 remaining finite (low-frequency set), equa- 

tion (40) becomes 

Sn2 1 a2 a2a (Sa,) = (Sa2), - - -+ - 
3 0 4 2  2 16 

It is interesting to note that equation (43) reduces to the expression in equation (48) as 
a5 - w. This condition pertains to small rotors on large foundations. 

is 
Again, because of the perfect square on the right side of equation (48), its solution 

This result is identical to that reported in reference 1 for the case with the center of 
gravity midway between the bearings. 

At zero rotor rotational speed, equation (44) reduces to 

and equation (49) becomes 

These solutions a re  entirely apart from the bouncing-mode frequencies of equation (37) 
because of the fundamental difference in their derivations. Certain geometrical condi- 
tions do exist, of course, in which the frequencies of the two modes could coincide. The 
result of equating expressions for S obtained from equations (37) and (50) is 
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Critical Speeds 

A critical speed is defined as any rotor rotational speed at which vibration amplifi- 
cation occurs. The bouncing mode is excluded from this classification because it is in- 
dependent of rotor speed. The critical-speed ratio is 

When this relation together with equation (34) is used in equation (40), the following 
fourth-order equation in Sr2 results: 

256 (2 

+ 8  1 + -  - (ST,) - 1 = O  ( ::+:8) 
se form of this expression is 
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When al, a2, a3, and a4 are constant, equation (55) yields four solutions of the type 

or 

7rl&=K (57) 

The eight roots given by equation (57) are all real when r3/r < 1, as equation (54) 
shows. Six roots a re  real and there is a complex conjugate pair when r3/r 2 1. The 
six real roots comprise two sets of mirror images. 

The mathematical condition for major critical speed is obtained from equation (53) 
by setting 

r = - = l  "1 

"4 

When this relation is used in equation (54), the result is 

n 

(59) 

As 7r6 + 0, the solution of equation (43) under the condition of equation (58) is 
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Equation (60) reduces to equation (61) when n5 becomes infinite. 

RESULTS AND DISCUSSION 

As previously mentioned, two classes of solution to the general frequency equations 
(eqs. (28) and (35)) exist. The determinant is a function of rotor rotational speed and 
shape; whereas its multiplying factor is independent of these parameters. This section 
presents graphical solutions and discussions of both the bouncing and conical modes of 
the frequency. 

Bouncing Mode 

The bouncing-mode frequency, obtained from equation (37), is the counterpart of the 
trivial solution p / i G  = 1, which is one of the solutions of the frequency equation 
derived in the firm-foundation analysis of reference 1 when the center of gravity is mid- 
way between the bearings. 

Figure 3 is a logarithmic plot of equation (37) that covers a range of the spring- 
constant ratio n6 essentially from zero to infinity. The ordinate is the dimensionless 
frequency parameter n1 = p / d p  defined by equation (29). The mass ratio 
n7 = M'/M varies over a range from one-half to infinity in figure 3. The upper set of 
solutions shown in figure 3 results from using the plus sign in equation (37). The minus 
sign yields the lower set. 

The absence of rotor rotational speed and moment of inertia in figure 3 is worth 
discussing. Each set of two points on the curves of this figure at a given value of 11.6 
represents the bouncing-mode natural frequencies of one particular rotor configuration. 

18 



i 

19 



The magnitudes and existence of these frequencies are completely dissociated from the 
stationary or rotating condition of this particular rotor. Only the spring-constant ratio 
r6 and mass ratio r7 affect these solutions, as equation (37) and figure 3 both show. 

becomes infinite, figure 3 and equation (37) with 
the minus sign reveal that the bouncing-mode frequency parameter approaches one. 
Likewise, as the mass ratio r7 - m, figure 3 and equation (37) with the plus sign show 
that rl becomes one. Physically, these two conditions correspond to the firm- 
foundation result rl = 1 found in reference 1. 

ishes. The upper set  approaches the value 1 + (l/r7), as equation (37) shows. 

As the spring-constant ratio 

At the other extremity in figure 3, where “6 - 0, the lower Set of so~utions van- 

Conical Mode 

The main discussion in this report is concerned with the conical-mode natural fre- 
quency, which is obtained mathematically when the determinant in equation (35) vanishes. 

Figure 4. - Abbreviated solution (eq. (@) for 4 = @ 
eq. (491 forA 4 = 4. 
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The solution is given by equation (40). It is evident that the foundation-to-rotor mass 
ratio 7rT is absent from this solution. 

Prior to a discussion of the graphical solution of equation (40), consideration of 
special cases of the spring-constant ratio ("6 = 0 and "6 = a) is instructive. Applica- 
tion to aircraft and spacecraft for the condition n-6 = 0 was cited in connection with the 
derivation of equation (44) (see p. 13). The case "6 = 00 represents the firm-foundation 
model of reference 1. 

Abbreviated solution. - Equation (44) is plotted in figure 4 with the factor 

2/4- multiplying 7r1 6 in the ordinate and multiplying 7r3 (7r4 6) in the 
abscissa. Inspection of equation (49) shows that figure 4 is also a graphical solution for 
this equation if the foundation-to-rotor moment-of-inertia ratio 7r5 is assumed infinite 
in the coordinates. Therefore, a feature of figure 4 is that it applies to each of the two 
extreme cases (floating foundation, "6 = 0 and firm foundation, 7i-6 = m). The set of 
curves in figure 4 is identical to a set in reference 1, with appropriate adjustment of 
coordinates. 

displayed by a single two-branch curve. The upper branch shown by the solid curve 
represents forward precession. The dotted curve represents backward precession. 
Figure 4 shows that as the adjusted shape-speed parameter increases, as by rising rotor 
rotational speed, the forward-precession frequency increases and the backward fre- 
quency decreases. 

The point of intersection of the two branches in figure 4 locates graphically the 
zero-speed condition given analytically by equations (50) and (51). These results have 
therefore shown that a stationary rotor on a floating or firm foundation has two natural 
frequencies - one bouncing-mode frequency from equation (37) and one conical-mode fre- 
quency from equations (50) or  (51). 

The advantage of the form of solution given by figure 4 is that all geometries can be 

From a comparison of equations (37) and (52) it is apparent that figure 3 also pre- 

that would be required for the sents the geometric constraints for 

zero-speed and bouncing-mode frequencies to be equal. 
General solution. - Some example solutions of the general frequency equation (40) 

are  presented graphically in figure 5. Representative samples appear in figure 5 with 

adjusted frequency parameter 7r1 6 and adjusted shape-speed parameter n3 7r4 
as coordinates. Presence of the disk effect 7r2 in the coordinates reduces by two-thirds 
the number of plots needed to show the amaunt of information in figure 5 
foundation-to-rotor moment-of-inertia ratio 7r5 = Ii/Ii is assigned values of 0. 5, 1, 
and 3 in each part of figure 5. The spring-constant ratio 7r6 = kz/kl assumes constant 
values of 1/3, 1, and 2 in figures 5(a), (b), and (c), respectively. 

For every value of 7r5 on each plot in figure 5, there is a high-frequency set of so- 

( 6) 
The 
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Forward 
----- Backward 

c 
i 
al 
al 
c 

s 
L m c1. 

Foundation-to-rotor 
moment-of-inertia ratio, 

~5 IjlIl 
1 
.8 0.5 

.6 1 

.4  
3 

Adjusted shape-speed parameter, n3("Sfi) = (t)A 
(a) Foundation -to -rotor spring-constant ratio, 

Figure 5. -General solution plots (eq. (40)). 

T6 (k*/kl) 0.3333. 

lutions and a low-frequency set. For firm foundations, reference 1 reports only one set 
when the center of gravity is midway between the bearings. For given geometry, fig- 

ure 5 shows four distinct solutions for r1 6, except when r3 ( r4 6) = 0. The solid 
curves represent forward precession, while the dotted curves represent backward pre- 
cession. The backward-precession curves rightly belong in the fourth quadrant but ap- 
pear in the first quadrant for convenience. A mirror image of a general solution plot 
also exists in the second quadrant, but only repeats the information given in figure 5. 
These eight roots from figure 5 and its mirror image comprise the total implied by 
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Precession 

Forward 
Backward ----- 

"E 6 

.04 :1_ 

.01 , 
0 1 2 3 4 5 

Adjusted shape-speed parameter, n3(7r4fi) = (-$z fl 
(b) Foundation-to-rotor spring-constant ratio, 

R6 (k2lkl) = 1. 

Figure 5. -Continued. 

equation (38). Because of the presence of r2 and r3 in the coordinates, each set of 
four points in figure 5 at a particular rotor rotational speed represents a single rotor 
configuration. 

Comparison of figures 4 and 5 reveals a primary result of this investigation. This 
is an assessment of the extent af the error made by approximating a flexible-foundation 
configuration by a firm-foundation model. It is evident immediately that the flexible- 
foundation model predicts the existence of four frequency solutions, whereas the firm- 
foundation model predicts only two. 
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Adjusted shape-speed parameter, 7r3 7r4 7r2 = (0 

(c) Foundation-to-rotor spring-constant ratio, 

Figure 5. - Concluded. 

7r6 (kzlkl)  = 2. 

compares quantitative results predicted by the two models. This table shows 
the approximate agreement between the flexible-foundation results and the two corre- 
sponding solutions of the firm-foundation model. Furthermore, such agreement exists 
over a wide range of spring-constant ratio "69 as will be shown by the discussion on 
page 29. 

a re  each isolated from all the others. 
Figure 5 illustrates the following trends when the effects of 7r4, r2, 7r3, 7r5, and n-6 

(1) When the rotational speed of a given rotor rises, the forward precession fre- 
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TABLE I. - COMPARISON 0 NCY PARAME 

BY FLEXIBLE- A 

aForward precession. 
bBackward precession. 

quency increases and the backward frequency decreases. 
(2) The fre uency parameter nl is inversely proportional to the square root of the 

disk effect &. 
(3) The forward-precession frequency increases and'the backward frequency de- 

creases as the rotor polar-to-diametral moment-of-inertia ratio n3 rises. 
(4) The precession frequency decreases as the foundation-to-rotor moment-of- 

inertia ratio n5 increases. 
(5) When the foundation-to-rotor spring-constant ratio 76 increases, the preces- 

sion frequency increases. 
When the adjusted shape-speed parameter n3 (n4 6) becomes large, all the 

forward-precession high-frequency curves in figure 5 approach as an asymptote the re- 
lation expressed by equation (42). Figure 5 also shows the asymptote approached by 
backward precession in the low-frequency set, as expressed in equation (41). 

intersections of the branches. Therefore, a stationary rotor on a flexible foundation has 
four natural frequencies, including the two bouncing-mode solutions. 

Frequency plots. - A graph of the variation in adjusted frequency parameter n1 6 
with adjusted rotational-speed parameter n4 6 is called a frequency plot. It is easily 
constructed from a general solution plot by specifyi 

In figure 5, there is a zero-speed condition for each of the two sets, given by the 

values for the rotor moment-of- 
a ratio, n3 for use as a parameter as in figure 6. In this figure, which was de- 
from figure 5(c), n5 and is 2. Therefore, figure 6 is less general and 
nts less information figure 5(c). 
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Adjusted rotational-speed parameter, 7r4@z =w $g 
Figure 6. - Frequency plot. 7r5 E Ii/Il= 3; 7r6 = k i k l  E 2. 
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Frequency plots are convenient for locating critical speeds by intersections of 
critical-speed ratio curves and frequency curves. Several critical-speed ratio curves 
appear in figure 6. Their significance will be treated in the nonsynchronous critical- 
speed discussions (see pp. 39 and 40). Each constant 7r3 curve on a frequency plot 
represents the or of a particular rotor, and shows its passage through various 
critical speeds 

The gradual slope of the low-value r3  curves in figure 6 shows that variation in 
rotor rotational speed has little effect on the precession of pencil-shape rotors. This ob- 
servation is also true for high- and low-frequency backward precession of all shapes, 

Spring- constant plots. - overall perspective of the effect of variations in the 
foundation- to- rotor spring- c tant ratio n6 on the frequency parameter 
by spring-constant plots, two of which appear in the logarithmic graphs of 
figure uses the shape-speed parameter n3n4 as the parametric variable. 
applies to any geometry in which n = 0.05 and 7r5 = 0.5, while 7(b) applies to any 
geometry in which 7r2 = 1 and n5 = 1. Figure 7 covers a range in spring-constant ratio 
n6 from essentially zero to infinity. Figure 4 provides the totality of solutions for  both 
the lower and upper boundaries of n6 in figure 7. 

and flexible-foundation models shown in table I, Figure 7 shows close agreement of the 
high-frequency forward-precession curves over a wide range of spring- constant ratio n6 
with the low-frequency forward-precession curves at their firm-foundation limits. Like- 
wise, the low-frequency backward-precession curves in figure 7 are insensitive to varia- 
tion in n 

rotor rotational- speed changes. 

The flatness of the curves in figure 7 account for the agreement between the firm- 

above values for r6 of about 1. 6 
s the spring-constant ratio n6 increases, the curves of cons 

otically the relation given by equatio t approach asy 
n a logarithmic of n1 against ne, equation ( ) maps as a straight line., 

A s  n6 increases, the curves of the low-frequency set  in figure approach values 
given by figure 4 and equation (49) with zero slope. 

ed by figure 4 correspond to the 
high- frequency or firm foundations, solutions correspond to the low- 
frequency set. . 

rectangular coordinates, 

foundations, the solu 

re 8 is an expanded portion of figure (a), showing the region about ne = 0 in 

To summarize, plots such as those in figure 7 provide solutions for the entire range 
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Shape-speed parameter, 

0 .5 1 1.5 2 
Foundation-to-rotor spring-constant ratio, 7f6 = k i k l  

Figure 8. -Enlarged s t ion of spring-constant plot of fig- 
u re  7(aL 9 = IllMl F- - 0.05; 79 = I j / I l= 0.5. 

of geometry, speed, and spring-constant ratio. Use of only three values of spring- 
constant ratio n6 in calculation of the general frequency equation (40) suffice in produc- 
tion of any one of these plots for the following reasons. The Den Hartog-type plot of fig- 
ure 4 establishes the lower and upper extremities of T6 in figure 7 .  The high-frequency 
curves approach asymptotically the expression given by equation (47) as "6 increases. 

Asymptotic limit. - Figure 9 is a graphical representation of the asymptotic limit 
given by equation (47). This figure shows that the parabolic relation between n1 and 
?76 is linear with a slope of 0.5 for all values of n2n5 on a logarithmic plot, as taking 
the log of equation (47) verifies. As is evident from figure 7, the asymptotic limit forms 
the backbone of the spring-constant plots. 
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lundation Firm foundation - 
ation-to-rotor spring-constant ratio, rh = k2/kl 

-Floating fa 
Found 

Figure 9. - Asymptotic limits (eq. (47)). 

Major Critical Speeds 

A practical application of the theory and maps developed in this report is to use 
them to locate major critical speeds. Knowledge of major critical-speed conditions is 
important because large vibration-amplitudes occur at major critical speeds in the ab- 
sence of damping. Major critical speed is defined by equation (58) 

quency plot, such as figure 6. On a frequency plot, intersections of the critical-speed 
ratio curve r = 1 with the frequency curves establish the major critical speeds. The 
trace of a major critical-speed curve on a general solution plot, such as figure 5, is 
given by 

Major critical-speed conditions are  most easily visualized by referring to a fre- 

. - A less pictorial but more mathematically rigorous approach to 
peeds is provided by equation (59). Graphical solutions of 
e 10, whichuses nh, c r h  and '3 as coordinates. The 
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Precession 

Backward 
rotor moment- 

------- ----- 

2 (disk) ,tor plar-to-diametral . 5  moment-of-inertia 1 1.5 ratio, 5 (1111) 

(a) Foundation-to-rotor spring-constant ratio, 

Figure 10. -Adjusted major critical-speed plots (eq. (59)). 

T6 (k$kl) 0.3333. 

parameter r5 varies in figure 10 to show the effect of rotor shape on major crit- 
lO(a) at 0.333, in 1O(b) at 1.0, 

section (pp. 24 and 25) also ap- Trends (2) to (5) enumerated in the 
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V 

s- 

rotor moment- 
of-inertia ratio, 

~5 IiU1 

1: 
'0 .5 1.0 1.5 2.0 (disk) 

Rotor polar-todiametral moment-of-inertia ratio, 1~~ = (1111) 

(b) Foundation-to-rotor s p r i n g a n s t a n t  ratio, 

Figure 10. -Continued. 

9 (k2lki) 1. 

major critical speed of the high-frequency set can be avoided by using such designs. If 
this is not feasible, designing with r3 as close to one as possible may yield a major 
critical speed well above the design rotor rotational speed. 

resonances, as shown by the fact that the dashed curves in figure 10 remain finite over 
the entire range of r3. The presence of 6 in the ordinate of figure 10, however, 
suggests that if a design with a low value of r2 is used (pencil shapes), both the forward 
and backward major critical speeds may be high enough to exceed design speed. 

ratio r6 on r4, cr 6 with curves of constant values of r5. A pencil-shape rotor 
r3 = 0.1 appears in figure ll(a), and a disk 7r3 = 2 is represented in figure ll(b). 

Figure 11 gives an overall perspective of major critical-speed conditions. The 

Selective geometrical design can not so easily avoid backward major critical-speed 

Effect of spring-constant ratio. - Figure 11 presents the effect of spring-constant 
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Precession 

Backward 

2- Foundation-to-rotor 
moment-of-inertia ratio, 

n5= IyI1 

- - - - - - _ _ _ _  

2.0 (disk) 0 .5 1.0 1.5 
Rotor polar-to-diametral moment6f-inertia ratio, 7r3 = (1/11) 

1 

- - - - - - _ _ _ _  
3 3  

0 .5 1.0 1.5 2.0 (disk) 
Rotor polar-to-diametral moment6f-inertia ratio, 7r3 = (1/11) 

(c) Foundation-to-rotor spring-constant ratio, 7r6 = (k2/kl) = 2. 

Figure 10. - Concluded. 

curves at the lower extremities of "6 are approximated by equation (60), and at the 
upper by equation (61). The asymptotes approached by the high-frequency set  a re  plotted 
from equation (47). 

No high-frequency forward-precession curves appear in figure l l(b) because r < n3 
(see p. 17). As n6 becomes large, the low-frequency curves in figure ll(a) converge 
into one forward- and one backward-precession curve (eq. (61)). The backward- 
precession curves of figure l l(b) behave like those in figure ll(a). The low-frequency 
forward-precession curves of figure l l(b) merge into their respective asymptotes as "6 
becomes large, as equation (47) specifies. 

There are no regions in the quadrant represented by figure 11 in which critical- 
speed solutions are forbidden. In figure ll(a), as n5 - 0 the low-frequency curves ap- 
proach the constant value of equation (61) for all values of n6. This observation also is 
true for the low-frequency backward-precession curves of figure ll(b). But when 
n3 > r (fig. ll(b)), the low-frequency forward-precession curves approach the ordinate 
axis (not shown) as n5 0. 
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As n5 increases, the low-frequency set covers the lower region of figure 11 all the 
way down to the abscissa axis (not shown). As  r5 -c 0, curves of the high-frequency set 
approach infinity in figure 11 . At the other extreme, they approach the constant value 
given by equation (61) as r5 becomes infinite. 

Because of the trends observed in figure 7, it was expected that for a given geom- 
etry the major critical speeds shown in figure 11 would increase with an increase in "6. 

Rising rotor rotational speed is represented in figure 11 by a traverse upward on 
the map at constant n6. Such a movement from a n5 curve of the low-frequency set to 
the corresponding r5 curve of the high-frequency set locates successive major critical 
speeds. 

figure 4 set the extreme boundaries of figure 7, the abbreviated major critical-speed 
plot in figure 12 does likewise for figure 11. With the ordinate 2n4 crh 
figure 12 is a plot of equation (60) for which r6 = 0 (floating foundation). When r5 is 
set  at infinity, figure 12 represents equation (61), for which "6 = 00 (firm foundation). 
The rotor moment-of-inertia ratio n is the abscissa coordinate in figure 12. It varies 

Abbreviated major critical-speed plot. - Just as the abbreviated frequency plot in 

9 

3 

3.5- 

3.0- 

1 
1. ---- 

I I -- 

Figure 12. - Abbreviated major critical-speed 
plot (eq. (60) for 7r6 = 9 eq. (61) for 4 = 03). 
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TABLE II. - COMPARISON OF MAJOR CRITICAL SPEEDS PREDICTED BY 

FLEXIBLE- AND FIRM-FOUNDATION MODELS 

Foundation 
model 

Flexible 
Firm 
Flexible 
Firm 

Shape Figure n5 

Pencil 1O(c) 1 
Pencil 12 00 

Disk 1O(c) 1 
Disk 12 * 

"6 "3 High- 
frequency set 

I I  I 
I 

Low- 
frequency set 

-0.91 -0.37 

-. 88 .83 -. 23 

(- 1) -. 29 

from zero to the value for a disk (2). Again, as in figure 10, the high-frequency curve 
approaches infinity as n3 - 1, beyond which this curve does not exist. 

Comparison with firm-foundation results. - Table I1 presents a comparison of the 
major critical speeds predicted by the two models for both pencil-shape rotors and disks. 
In table 11, the two solutions not predicted by the firm-foundation model are  approximated 
by using plus and minus the firm-foundation bouncing-mode solution. The reasonably 
good agreement between the two sets of results for both pencil-shape rotors and disks 
implies good agreement for all intermediate shapes. Table I1 has thus shown that the 
firm-foundation results from figure 12 with the addition of this model's bouncing-mode 
solutions (A) provide an easily obtained but good approximation to flexible-foundation re- 
sults. 

Nonsynchronous Critical Speeds 

In references 6 to 9, Yamamoto reports on experimental work showing that large 
amplitude increases occur at rotor rotational speeds other than the major critical. His  
work with rotors supported by ball bearings revealed that bearing defects cause nonsyn- 
chronous precession. He found two classes of nonsynchronous precession associated 
with double-row ball bearings (refs. 6 and 7), and two other classes associated with 
single-row types (refs. 8 and 9). 

With double-row ball bearings, nonsynchronous critical speeds occur both above and 
below the major critical speed. All  nonsynchronous critical speeds associated with 
single-row ball bearings occur at rotor rotational speeds greater than the major critical. 
The spring characteristics of double-row ball bearings are linear, and those of the 
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single-row type a re  nonlinear. 
Double-row ball bearings. - Nonuniformity in ball diameters is a cause of nonsyn- 

chronous motion at rotor rotational speeds greater than the major critical. Yamamoto's 
work disclosed that the most serious conditions of this type occur when 

1 
] r=-  

2. 65 

for forward precession, and 

1 
4 . 1  

r = - -  

for backward precession. 
Frequency plots, such as the example shown in figure 6, are ideally suited for dis- 

playing critical-speed conditions. Curves of constant critical-speed ratio r could also 
be shown on the general solution plots of figure 5. 

tions of equation (63) with the forward-precession curves are meaningful. Similarly, the 
intersections of equation (64) with backward-precession curves are  meaningful. Dots in 
figure 6 denote valid intersections. For a given rotor, the nonsynchronous critical 
speeds specified by equations (63) and (64) are  more than twice the major critical speeds. 

Yamamoto showed that noncircular inner and outer bearing races cause nonsynchro- 
nous motion at critical-speed ratios r of 2, 3, and 5. Because of the small amplifica- 
tion that occurs at r = 5, this condition is not serious. Curves depicting r = 2 and 
r = 3 appear in figure 6. According to Yamamoto, only the intersections with forward- 
precession curves are  valid. Because all intersections occur well below the major crit- 
ical speed, even low-speed rotors can experience this type of nonsynchronous precession 
during acceleration. 

forward-precession intersections occur for critical-speed ratios r 5 2. This is a 
graphical illustration of the fact discussed in connection with equation (54) that one of the 
solutions for n1 is imaginary when n3/r 1 1. Thus, as reference 1 reported, no 
high-frequency forward-precession critical speed can exist for geometries in which 7r3 

equals or exceeds the critical-speed ratio. Low-frequency critical speeds exist, how- 
ever, for all rotor shapes. 

types of defects mentioned. It may therefore be presumed that nonsynchronous critical 
speeds defined by equations (63) and (64), and r = 2 and 3 will all occur. 

Curves representing equations (63) and (64) appear in'figure 6. Only the intersec- 

Inspection of the curve for n3 = 2 in figure 6 reveals that no high-frequency 

It is not likely that a set of double-row ball bearings will have only one of the two 
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Single-row ball bearings. - Yamamoto observed in reference 8 that nonsynchronous 
critical speeds of subharmonic oscillation appear only when the shafts are supported by 
single-row ball bearings. This motion, which appears only in forward precession, re- 
sults from nonsymmetry of the nonlinear spring characteristics of the bearings. 

Subharmonic motion is characterized by critical-speed ratios r = 1/2, 1/3, 
1/4, . . . l/n, where n is a positive real integer. This phenomenon can occur only 
after the major critical speed is exceeded because r < 1 (see fig. 6). Also, because of 
the low value of r, pencil-shape rotors experience both high- and low-frequency motion 
of this type. Only low-frequency precession is possible in disks. Figure 6 shows curves 
of r = 1/2 and r = 1/3 to provide examples of this phenomenon. 

Yamamoto further observed in references 8 and 9 that when single-row ball bearings 
are used, two natural frequencies build up together at certain rotor rotational speeds. 
The absolute value of their sum or difference is related to rotor rotational speed by 

in which pi and p. are any two of the four natural frequencies obtained from equa- 
tion (54). Yamamoto refers to this motion as summed and differential harmonic oscilla- 
tions. In reference 8, Yamamoto reports that vibration amplitudes from these sources 
may exceed those of the major critical speeds. From figure 5, it is evident that the 
condition i = j is trivial and applies only at zero rotational speed. 

tion, there are 12 summed and differential combinations of the type specified in equa- 
tion (65). To display these combinations graphically, figure 13 presents the portion of 
the frequency plot of figure 6 pertaining to 7r3 = 0.4. Solutions p1 and p2 represent 
forward precession and p3 and pq represent backward precession. The curve r = 1 
locates nonsynchronous critical speeds of this type in figure 13. Because the intersec- 
tions of all curves with the curve r = 1 in figure 13 are valid, it is unnecessary to use 
dots. 

Therefore, there can be no intersections of the curve r = 1 with the curves (pl + p41 
and Ip2 + p31, as figure 13 shows. These solutions are forbidden for any geometry 
from pencil shape to disk. Figure 13 shows that the maximum number of intersections 
is 10 for any shape. 

Yamamoto and Hayashi proved mathematically in reference 9 that only summed har- 
monic oscillations can occur if both frequencies pi and p. represent forward preces- 
sion, or i f  both represent backward precession. Only differential harmonic oscillations 
can occur i f  one frequency represents forward and the other represents backward pre- 
cession. Table 111 reviews the combinations allowed and forbidden. 

J 

Because there are four unique solutions pl, p2, p3, and p4 to the frequency equa- 

At zero rotor rotational speed, solutions p1 and p4 coincide as do p2 and p3. 

3 
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Major 
critical speed, 
r = q l g =  17, 

/' 

Fo m a  rd 
Backward 
Summed and 

differential 
solutions 

_--__ 

0 1 2 3 4 5 .01 

Adjusted rotational-speed parameter, 7r4& = --& 

Figure 13. - Frequency plot locating summed-and- 
differential harmonic nonsvnchronous critical 

TABLE III. - ALLOWED AND FORBIDDEN SUMMED AND 

DIFFERENTIAL HARMOMC COMBINATIONS 
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For disks, no Ipl f p. I intersections can exist, as figure 6 verifies. These inter- 
sections are nonexistent for any rotor shapes for which 7r3 L 1. Consequently, for disks 
only 5 intersections of Ipi * p. I with the curve r = 1 are possible. But table III forbids 
two of these. Therefore, only I p2 - p3 I , 1 p2 - p4 1, and Ip3 c p4 I can occur for disks. 
Yamamoto and Hayashi present experimental evidence in reference 9 to substantiate 
table III for disks. 

and differential nonsynchronous critical speeds is 3 for disks and 6 for pencil-shape ro- 
tors. These results coincide with those found in reference 1 for a firm-foundation model. 

From figure 6 it can be shown that for r3 = 1, the curve w = Ipl + p31 lies close 
to the curve r = 1 over most of the speed range. Fortunately, table III forbids a non- 
synchronous critical speed for these conditions. Therefore, this potential danger does 
not occur. 

J 

J 

A conclusion from this phase of the study is that the maximum number of summed 

SUMNARY OF RESULTS 

The theoretical critical- speed analysis of rigid rotors on flexible foundations yielded 

1. Two frequency modes exist. One is the bouncing mode, which is a function of 
these results: 

foundation-to-rotor mass and spring- constant ratios only. Another is the conical mode, 
which is a function of moment-of-inertia and spring-constant ratios as well as rotor ro- 
tational speed. 

2. The bouncing-mode natural-frequency result comprises two unique solutions. 
The following results pertain to the conical-mode natural-frequency and critical- 

3. Four unique solutions result that are part of low-frequency and high-frequency 
speed solutions. 

two-branch sets of curves. Forward and backward precession are represented by a 
branch in each set. 

lutions predicted by the flexible-foundation model, its two existing solutions agree 
well with their flexible-foundation counterparts. The two omitted critical-speed solu- 
tions can be approximated by using plus and minus the firm-foundation bouncing-mode 
solution (7rl = *I). 

5. At the foundation- to- rotor spring- constant ratio extremities of zero and infinity, 
the general solution can be approximated by a single two-branch set that represents all 
geometries. This set is identical to the results given by a firm-foundation model. 

6. Because of the existence of this set, only three calculated points a re  required to 

4. Although a firm-foundation model predicts only two of the four critical-speed so- 
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cover the entire range of foundation-to-rotor spring-constant ratio for a specified geom- 
etry. 

7. The frequency magnitude of forward precession exceeds that of backward preces- 
sion at all speeds for all rotor shapes. 

8. Individually, increasing rotor rotational speed and rotor polar-to-diametral 
moment-of-inertia ratio each is associated with increased forward-precession and de- 
creased backward- pr e ces si on frequencies. 

9. frequencies are inversely proportional to iw. 
10. Increase in all frequencies is associated with decreased foundation-to-rotor 

11. No forward-precession high-frequency critical speeds exist for geometries in 
moment-of-inertia ratio and increased spring- constant ratio. 

which the rotor polar-to-diametral moment-of -inertia ratio equals or exceeds the 
critical-speed ratio. 

12. In backward precession, disks have lower critical speeds than pencil-shape rotors. 
13. In summed and differential harmonic oscillation, the number of nonsynchronous 

critical speeds varies from 3 for a disk to 6 for pencil-shape rotors. 
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